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ABSTRACT
This article presents a review of the recent findings on the combination of electrospun nanofibers and three-dimensional (3D)-
printed structures for extracellular matrix (ECM) scaffolds for bone tissue engineering. We explore the synergy between electro-
spinning (ES), which produces highly porous, fibrous structures from materials like collagen and gelatin, and 3D printing, which 
allow precise scaffold design using biopolymers. We discuss the selection of appropriate biopolymers based on their mechanical 
properties, biocompatibility, and biodegradability, as well as the key functions of ECM structures in cell attachment, migration, 
and differentiation. We analyze the strengths and limitations of each technique, noting that while ES enhances cellular adhe-
sion and proliferation, it struggles with complex geometries and scalability. In contrast, 3D printing provides strong structural 
support but faces challenges with resolution and biomaterial compatibility. Our review focuses on the innovative integration of 
these methods, aiming to merge ES's microstructural precision with 3D printing's structural strength. We evaluate various hy-
brid combination methods, including sequential and coaxial techniques, and discuss potential solutions to challenges related to 
ECM scaffold quality, production time, and scalability. Furthermore, we highlight recent discoveries and propose future research 
directions to enhance further mimicking the ECM scaffold of bone.

1   |   Introduction

In the context of bones, the extracellular matrix (ECM) refers to 
the complex network that comprises the structural framework 
of bone tissues [1]. It primarily consists of fibrous, non-soluble, 
and high-molecular-weight proteins like collagen and proteogly-
cans [2], as shown in Figure 1. Together, they serve as a scaffold 
and offer mechanical support to bone cells [4, 5], which support 
is significant for ensuring the strength and integrity of bone [6]. 

Additionally, ECM provides adequate space and surface for cell 
attachment, migration, and differentiation.

The ECM can undergo damage from various factors such as 
mechanical impact, aging, illness, or inflammation [7]. Tissue 
regeneration is a medical approach that blends materials sci-
ence, biology, and engineering to guide the recovery of damaged 
tissues and organs [8, 9] and encourages seamless integration 
with the host tissue [10]. Hence, the primary objective in tissue 
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engineering (TE) is to make a suitable ECM scaffold capable of of-
fering basic structural support, as we outlined. Recently, various 
methods have been used to repair damaged bone ECM scaffolds 
to promote bone regeneration. These include treatments like bone 
grafting, growth factor therapy, stem cell therapy, and TE [11, 12].

In the field of TE, primary techniques such as three-dimensional 
(3D) printing and electrospinning (ES) are commonly used in re-
search to reproduce ECM structures. The ES technique is a fea-
sible method for generating polymeric nanofiber mats. Besides, 
3D printing has emerged as a powerful technique for creating 
customized shapes with precise control over geometry and pore 
structures. In addition, various polymers and biopolymers, in-
cluding natural and synthetic polymers, are being widely used 
in those techniques.

Despite that, each technique has unique challenges in replicat-
ing ECM structures. The ES method, in particular, is limited 

by the flat structure of its products [13]. Some simple multilay-
ered structures can be achieved by stacking electrospun fibers 
with varying compositions [14]. However, electrospun layers 
cannot truly replicate the spatial structure of ECMs, rendering 
them insufficient to address substantial bone defects' restorative 
needs [15].

Consequently, the main features of electrospun nanofibers are 
high surface area [16], substantial porosity [17], and exceptional 
absorption capabilities [18]. Additionally, nano- or microscale 
fibers, mainly from biopolymers, can be produced through ES 
techniques to simulate the fibrous nature inside ECM.

Similarly, in the 3D printing technique, achieving adequate res-
olution and precision in such a complex bone ECM structure 
stands as a challenge. The 3D printing technology has diverse 
methods offering unique capabilities for precise and reproduc-
ible geometry on the macro level. Henceforth, this combination 
provides enhanced surface customization, creation of gradient 
structures, expedited prototyping, and precise control over pore 
size and porosity. In the following chapters, our objective is to 
summarize and review existing literature findings on how the 
ES technique, biopolymers employed, and various methods of 3D 
printing serve as valuable means for mimicking ECM structures.

Integrating the advantages of both techniques holds great po-
tential in TE for creating personalized 3D scaffolds. The combi-
nation of ES and 3D printing technologies presents a connection 
between the unique properties of electrospun nanofibers and 
the unique design freedom of 3D printing. In the following chap-
ters, we review each technique and the related ECM-mimicking 
approaches in detail.

2   |   ES Methodology

The positive benefits of electrospun nanofiber structures have 
encouraged researchers to explore their applications further in 
various fields related to TE [19], wound healing [20], drug deliv-
ery [21], and other branches such as filtration [22], sound absorp-
tion [23], and chemical sensors [24, 25].

FIGURE 1    |    The structure and components of the ECM. This figure is 
based on the work by M. Keshvardoostchokami et al., titled Electrospun 
nanofibers of natural and synthetic polymers as artificial ECM for tissue 
engineering and is licensed under the Creative Commons Attribution 
4.0 International License (CC BY 4.0). The original work can be found 
in reference [3].

FIGURE 2    |    Schematic diagram of the basic ES set-up.
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The basic ES setup mainly consists of a high direct current 
(DC) voltage power supply, a spinneret that is a metal capil-
lary, and a collector, as shown in Figure 2. A semi-dilute poly-
mer solution is loaded into a syringe and pressurized through 
the capillary at a constant flow rate [26, 27]. A semi-dilute 
polymer solution provides the right combination of viscosity, 
chain interactions, and force balance necessary for stable jet 
formation in the process, enabling the effective production of 
continuous fibers [28, 29].

Subsequently, a liquid droplet forms at the needle's tip [30]. 
The electrostatic field generates a force that opposes the sur-
face tension of the liquid [31]. Because of the same electrostatic 
charges distributed along the surface of the conducting droplet, 
the droplet undergoes deformation, and upon reaching a par-
ticular conical shape, a liquid stream forcefully ejects from the 
surface [31, 32]. As the jet advances toward the collector, the 
solvent evaporates, leading to the formation of the fiber on the 
grounded collector [33], as shown in Figure  3. The principles 
and details of ES are summarized in [34] which we recommend 
for further reading.

Presently, the significance of employing biopolymer electrospun 
nanofibers is notably pronounced across diverse fields within 
medical applications, as shown in Figure 4. Thus, electrospun 
nanofibers produced from biopolymers are extensively used in 
biomedical fields [35] because of their high specific surface area, 
high porosity, good adsorption capabilities, veil-like flexible 
structure, and versatility [36, 37].

2.1   |   Biopolymers

ES is the most popular way to produce nanofibers from bio-
polymers in academia and industry. Subsequently, electrospun 
nanofibers produced from biopolymers are extensively used in 
biomedical fields such as TE and drug delivery [36, 37]. The po-
tential natural origins for medical and engineering applications 
are shown in Figure 5.

FIGURE 3    |    Electrospun nanofiber mat (a) on aluminum foil collector, and (b) magnification image by scanning electron microscopy (SEM).

FIGURE 4    |    Applications of electrospun fibers in the medical field. FIGURE 5    |    Potential natural origins of biopolymers. This figure is 
based on the work by R. Dimri et al., titled Role of microalgae as a sus-
tainable alternative of biopolymers and its application in industries, and 
is licensed under the Creative Commons Attribution 4.0 International 
License (CC BY 4.0). The original work can be found in reference [38].
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Biopolymers such as poly(caprolactone) (PCL), poly(ethylene 
glycol) (PEG), poly(lactic acid) (PLA), poly(lactic-co-glycolic 
acid) (PLGA), chitosan, and gelatin are commonly engaged in 
ES for TE because of their excellent biocompatibility, capacity 
for biodegradation within the human body [39, 40], but they 
have different mechanical properties as shown in Figure  6. 
PLA offers high tensile strength and rigidity, making it ideal 
for structural integrity applications. In contrast, PEG is flex-
ible and soft, which can be good for cell interactions but may 
not provide enough support. PLGA balances strength and flex-
ibility, making it versatile for various uses. Gelatin is flexible 
and friendly to cells but lacks synthetic polymers' strength. 
Chitosan has low modulus, but it can be made stronger with 
cross-linking, while PCL is elastic and durable, allowing for 
fibers that can last longer. These differences allow for tailored 
electrospun fibers to meet specific functional requirements in 
various applications.

2.2   |   Biocompatible Properties of Biopolymers

Biopolymers are polymers derived from natural sources, such 
as living organisms or renewable materials, often rendering 
them biocompatible properties  [52]. Biocompatible polymers 
are specially engineered materials that do not trigger adverse 
reactions or toxicity when interacting with living tissues, cells, 
or organisms [53]. Subsequently, they comprise monomeric 
units which are similar to those found in living organisms and 
are often biodegradable [54]. Because these monomeric units 
are familiar to living organisms (i.e., amino acids in proteins, 
nucleotides in nucleic acids, and sugars in polysaccharides), 
they can be effectively recognized and broken down by en-
zymes. Furthermore, selecting biopolymers requires careful 
consideration of several critical factors, including mechanical 
properties, degradation rate, and appropriateness for specific 
tissues or organs [55, 56].

FIGURE 6    |    Mechanical behavior of biopolymer (a) Young's modulus; (b) Tensile strength. references: PLA [41, 42], PCL [43–45], PEG [46], PLGA 
[47–49], gelatin [47–49], and chitosan [50, 51].

TABLE 1    |    Degradation mechanisms and rates of major biopolymers.

Biopolymer
Primary degradation 

mechanism
Degradation 
rate (in vivo)

Degradation 
rate (in vitro)

Key factors 
influencing 
degradation References

PLA Hydrolysis, enzymatic Months to years Months to years Molecular weight, 
crystallinity, pH, 
and temperature

[57, 58]

PCL Hydrolysis Months to years Months to years Molecular weight, 
crystallinity, 
and porosity

[59, 60]

PEG Hydrolysis Days to weeks Weeks to months Molecular weight 
and concentration

[61, 62]

PLGA Hydrolysis Weeks to months Weeks to months 
(faster than in vivo)

Lactic-to-glycolic 
ratio, pH, and 

molecular weight

[63, 64]

Gelatin Enzymatic Days to weeks Days to weeks Cross-linking 
density and enzyme 

availability

[65]

Chitosan Enzymatic, hydrolysis Weeks to months Weeks to months Degree of 
deacetylation and 
molecular weight

[65]
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Several researchers have documented the degradation rates 
of various biopolymers under different conditions and time-
frames. Biopolymer degradation may occur via mechanisms 
like hydrolysis, enzymatic, oxidative, or physical breakdown. 
To provide a clearer comparison, Table 1 summarizes the pri-
mary degradation mechanisms, rates, and influencing factors 
for commonly used biopolymers in various applications. Besides 
all these requirements, even the degradation products must be 
biocompatible.

The selection of these biopolymers is based on their mechani-
cal, chemical, and biological properties, which influence their 
compatibility with cell development and determine their suit-
ability for various applications. PCL is compatible with various 
cells, including osteoblasts and fibroblasts, making it ideal for 
bone regeneration and wound healing [66]. PLA has high ten-
sile strength but is less effective for cell attachment, hence it is 
typically used in orthopedic implants and sutures [67]. PEG, 
while not as effective for cell attachment, is widely used for drug 

delivery and cell encapsulation in tissue engineering [68]. PLGA 
supports fibroblasts and mesenchymal stem cells, making it a 
good choice for bone and cartilage regeneration and drug deliv-
ery [69]. Chitosan is excellent for promoting cell adhesion, par-
ticularly for cartilage and skin cells, and is often used in wound 
healing and cartilage repair [70]. Gelatin, which degrades 
quickly, supports a wide range of cells and is commonly used 
in soft tissue engineering and drug delivery [71]. These biopoly-
mers are chosen for specific applications based on their ability to 
support cell development. Considering the degradation mecha-
nisms of biopolymers, PLA and PCL are widely preferred for bio-
medical applications because they have predictable degradation 
rates and are biocompatible.

Based on research findings of Katila et  al. [72] and Anderson 
et  al. [73] PLA undergoes natural environmental degradation, 
breaking down into carbon dioxide (CO2) and water (H2O), con-
tributing to its degradability. PLA readily undergoes hydrolysis 
within living organisms, producing lactic acid (LA), which can 

TABLE 2    |    Parameters controlling electrospun fiber morphology and diameter in the case of biopolymers.

Parameters Effect on fiber morphology Biopolymer used

1. Solution parameters Viscosity Increasing viscosity will result in 
a greater fiber diameter. However, 
if the concentration of the polymer 

solution is low, continuous fiber 
structures cannot be created.

Chitosan [84], PLA 
[85], and gelatin [86]

Polymer concentration By increasing the polymer concentration, 
the fiber diameter increases.

PCL [87], PLGA [88] 
and PLA [89]

The molecular weight 
of the polymer

Increasing the molecular weight leads 
to a decrease in beads on the fiber.

Chitosan [90], 
and PLA [91]

Electrical conductivity Rising electrical conductivity leads 
to a reduction in fiber diameter.

PLA [92] and PCL [93]

Surface tension Lowering the solution's surface 
tension results in smoother fibers.

Gelatin [94] and 
PLGA [95]

2. Process parameters Applied voltage An increase in applied voltage 
results in reduced fiber diameter.

Chitosan [96] 
and PCL [97]

Distance from needle 
to collector

Reducing the gap between the needle 
and the collector results in the 

production of thinner fibers. However, 
if this gap becomes too small, the 
polymer jets may not have enough 

time to solidify, which can lead to the 
formation of beads on the fibers.

PCL [98] and chitosan [99]

Feeding rate By increasing the feeding rate, the 
diameter of the fiber increases.

PLGA [100] and PCL [101]

Needle diameter Higher needle diameter results in 
uniform fiber size distribution.

Chitosan [102]

3. Ambient parameters Temperature Increasing the temperature leads 
to increased fiber thickness 

because of faster evaporation.

PCL [103]

Humidity Increasing humidity causes an 
increase in the diameter and 

distribution of the pores.

PLA [104]
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be enzymatically degraded within the body, thus enhancing bio-
compatibility [74]. Furthermore, Gautam et al. [75] have studied 
an electrospun scaffold containing PCL, gelatin, and chitosan 
for TE. In this blend, they found that PCL is biodegradable, bio-
compatible, with strong mechanical stability, and helpful for TE 
utilities.

Furthermore, electrospun biopolymer nanofibers undergo a deg-
radation process over time, leading to their breakdown. The el-
ements influencing the degradation rates of biopolymers center 
around the conditions (in vivo or in vitro), material properties, 
including molecular weight and distribution [76], the degree of 
crystallinity [77], porosity and pore size, shape, and morphology 
[78], and polymer composition [79].

2.3   |   Biomimetic ECM Scaffolds Using Electrospun 
Biopolymer Nanofibers

In the past few years, the use of electrospun biopolymers to 
emulate the ECM structure of bone tissue has gained greater 
importance in various scientific areas [80]. Since electrospun 
nanofibers possess a high surface-to-volume ratio and intricate 
porosity with good pore connectivity, they offer valuable attri-
butes for advanced biomedical applications [81]. This can be 
accomplished by arranging the nanofibers into preferred con-
figurations through layering or weaving [82]. The fibers can re-
semble the fibrous structure of the ECM.

The morphology of electrospun fibers is critical to generating 
fiber structures with favorable characteristics [83]. There are 
basically three types of parameters that affect the process: (1) 
solution-related, (2) process-related, and (3) ambient parameters. 
Their effect is summarized in Table 2 for various biopolymers.

A wide variety of materials can be used for the ES of ECM scaf-
folds. These are typically two-dimensional (2D), planar textile 
structures that need to be processed further to get the desired 
shape and properties  [13]. Nonetheless, the ES technique has 
some limitations, including fibers with poor mechanical char-
acteristics [105], a high residual solvent content [106, 107], the 
process is slow [39], and the difficulty in shaping custom forms 
of ECM structure [108]. Thus, electrospun materials are mainly 
suitable for applications that require a significant surface area, 
such as those in medical and filtration fields [109].

Building 3D structures through ES is quite challenging, leading 
some researchers to use multiple layers of electrospun mats to 
increase the material's thickness. Han et al. [110] were able to 
design an ECM structure by sequentially layering electrospun 
fibers three times to form three distinct layers, as shown in 
Figure 7. They obtained those different mat layers by modifying 
the rheological parameters of ES (as mentioned in Table 1). The 
first layer consisted of a dense, flat mat structure of electrospun 
material forming the bottom layer. Before making the middle 
layer, they introduced a digitated copper wire template with 
300-μm coils and 1 mm gaps to introduce porosity between the 
first and second layers. Subsequently, they fabricated middle and 
top layers intermediate between dense and loose structures. The 
connection between the middle and top layers was maintained 
at regularly spaced intervals, with large pores in between.

Overall, they created a simple 3D structure from electrospun 
fiber mats that could potentially replace ECM structures. 
Consequently, controlling the alignment and pattern of fibers 
within a scaffold can replicate the organized system of the ECM 
found in various tissues. Additionally, fibers can be treated with 
bioactive compounds like growth factors or signaling peptides, 
delivering chemical signals to cells and resembling the natural 
signaling molecules in the ECM [111]. Mao et al. [112] developed 
multilayer nanofibrous membranes from PLLA, stromal cell-
derived factor-1α (SDF-1α), and mesenchymal transition factor 
01 (MT01). They employed a micro-sol ES technique to fabricate 
the individual nanofibrous layers of the scaffold. These layers 
were then stacked manually to create the multilayer structure 
necessary for the dual-delivery system. This scaffold served 
as a dual-delivery system to improve bone healing. It was de-
signed to quickly release SDF-1α to help mesenchymal stem 
cells (MSCs) move to the injury site while gradually releasing 
MT01 to encourage these cells to develop into bone cells through 
a specific signaling pathway mitogen-activated protein kinase. 
The study found that this approach improved the movement and 
bone-forming ability of MSCs in lab tests. Additionally, tests 
on rats with skull defects showed that the scaffold led to better 
bone growth and blood vessel formation, suggesting it could be 
a promising solution for treating bone injuries by imitating the 
body's natural healing processes.

Abudula et  al. [113] created a composite scaffold for vascular 
TE through ES, reinforcing a matrix consisting of PLA and poly 
(butylene succinate) (PBS) with cellulose nano-fibrils (CNFs). 
To create composite fibrous scaffolds incorporating CNF (cellu-
lose nanofiber), they first produced CNF/PBS composites with 
various concentrations using melt extrusion. Afterward, they 
dissolved a mixture of PLA and CNF/PBS composite in a chloro-
form and acetone solvent system with a 3:1 volume ratio, mak-
ing fiber mats through ES.

PBS, as shown in Figure  8c,d, exhibited superior cell at-
tachment when compared with PLA alone, as shown in 
Figure  8a,b. However, the PLA/PBS scaffold displayed no-
tably better cell attachment performance than either PLA or 
PBS individually, as shown in Figure 8e,f. This improvement 
can be attributed to the scaffold's uniform fibrous structure, 
enhanced protein adsorption capacity, and moderately hydro-
philic wetting properties [113]. Nonetheless, this study's lim-
itations include the 2D structure, high solvent content, slow 
processing, and difficulty customizing scaffolds that cannot 
replace ECM scaffolds.

FIGURE 7    |    SEM image of the multilayer structured scaffold from 
the ES technique [110]. Reproduced with permission from Elsevier.
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2.4   |   Electrospun Fiber Sponges and Their 
Applications in 3D ECM Scaffolds

Electrospun fiber sponges are practical and suitable resources 
in TE, filtration, and drug delivery because of their porous 3D 
structure. They have greater porosity, closely resemble the ECM 
structure, and provide a more favorable microenvironment for 
cell growth, proliferation, and differentiation [114]. The prin-
ciples and details of the techniques are summarized in refer-
ence [115].

The process of preparing electrospun short fiber sponge scaf-
folds is shown in Figure 9. These electrospun fibers are then col-
lected and cut into short lengths, dispersing them in a container 
as shown. Subsequently, these dispersed fibers can be molded 
into various 3D shapes and sizes. The final product is a 3D elec-
trospun fibrous sponge, which achieves its structure from the 
entanglement [117].

Moreover, Zhang et al. [118] created a scaffold by combining 
fish collagen/PLA nanofibers made through ES. First, nano-
fibers were dispersed in tert-butanol. Subsequently, they used 
a high-speed homogenizer to break down these nanofiber 
pieces uniformly and freeze-dried them to produce porous 
electrospun short nanofibrous sponges. These sponges con-
tained various randomly arranged short fibers closely resem-
bling the natural ECM structure. This arrangement facilitated 
cell adhesion and growth by speeding up the formation of new 
blood vessels at the sites of defects and controlling the process 
of bone marrow mesenchymal stem cells differentiating into 
bone-forming cells.

3   |   Three-Dimensional (3D) Printing Technique

The 3D printing is a manufacturing technique that builds objects 
layer-by-layer, using a 3D computer-aided design (CAD) model 
[119–121]. Multiple investigations have demonstrated that 3D 
printing is promising in enabling precise control over individ-
ual 3D geometries [122] and creating scaffold structures with 
considerable pores [123]. 3D printing offers extreme custom-
ization options and operates efficiently, leading to widespread 
adoption, particularly in medical fields [124]. Additionally, 3D 
printing includes a range of different types, each designed for 
different uses.

3.1   |   Different Types of 3D Printing Techniques

Various 3D printing techniques are used for 3D printing scaf-
folds, among which the most popular ones are fused filament 
fabrication (FFF), stereolithography (SLA), and selective laser 
sintering (SLS), as shown in Figure 10.

Each technique has advantages and disadvantages when mak-
ing an ECM scaffold. We briefly summarized those in Table 3. 
The main obstacle in the 3D printing of scaffolds is achieving 
the desired porosity because the finest resolution possible is typ-
ically in the microscale, which is still too large for most cells to 
attach to the scaffold's surface [128].

As mentioned previously, ECM comprises a dynamic arrange-
ment of proteins, glycoproteins, and various molecules, creating 
a complex microenvironment crucial in influencing cell behav-
ior and tissue function. Therefore, extreme diffusivity is also 
necessary for 3D scaffolds to promote the efficient transport of 

FIGURE 8    |    Images using green fluorescence protein (GFP) fusion 
protein and 4′,6-diamidino-2-phenylindole (DAPI) GFP/DAPI and SEM 
of PLA (a, b), PBS (c, d), PLA/PBS (50/50) (e, f), and C4 composite scaf-
fold [113]. Reproduced with permission from Springer Nature.

FIGURE 9    |    Simple illustration outlining the production process 
of electrospun short fiber sponge scaffolds. This figure is based on the 
work by Y. Li et  al., titled Electrospun fibrous sponge via short fiber 
for mimicking 3D ECM, and is licensed under the Creative Commons 
Attribution 4.0 International License (CC BY 4.0). The original work 
can be found in reference [116].
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FIGURE 10    |    Common 3D printing methods for scaffold fabrication (a) Fused filament fabrication (FFF), (b) Stereolithography (SLA), and (c) 
Selective laser sintering (SLS). This figure is based on the work by Z.-X. Low et al., titled Perspective on 3D printing of separation membranes and 
comparison to related unconventional fabrication techniques, and is licensed under the Creative Commons Attribution 4.0 International License (CC 
BY 4.0). The original work can be found in reference [125].

TABLE 3    |    Advantages and disadvantages of the three main types of 3D printing used for creating ECM structures.

3D printing 
type Advantages Disadvantages References

FFF Cost-effective, wide material selection, 
simple setup, and operation

Lower resolution, visible layer 
lines, and limited precision

[126, 127]

SLA High resolution, wide material 
selection, and precise features

Expensive equipment and materials, 
and post-processing requirements

[126, 127]

SLS High strength and durability, material 
versatility, and complex geometries

High equipment and material 
costs, limited surface finish, and 

longer production times

[126, 127]

FIGURE 11    |    FFF technique to create 3D PLA scaffold structures [132]. Reproduced with permission from Elsevier.
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oxygen and nutrients, and the size of pores is one of the main 
factors in cell distribution and the penetration of nutrients. 
Nonetheless, achieving better dimensional accuracy requires 
adding more layers, which slows down the process. This chal-
lenge means that 3D printing may not be as practical as tra-
ditional mass-production methods like extrusion or injection 
molding [129]. However, there are many areas for improvement 
in 3D printing, such as the stringing that occurs in FFF tech-
niques when small strands of melted filament stretch between 
parts of the print. Retraction pulls filament back into the nozzle 
during movement. Over-extrusion results in excess material on 
the print's surface, leading to a rough texture and visible spots.

The FFF technique operates by extruding continuous filament, 
enabling the customization of parameters such as layer thick-
ness, orientation, and pore structure  [130, 131]. On the other 
hand, it uses high temperatures to melt the thermoplastic fila-
ment, and it is not capable of processing tiny details or pores. A 
sample of a 3D structure that is quite typical for FFF printing is 
shown in Figure 11.

SLS and SLA are sophisticated 3D printing methods that 
use lasers to build objects, but they operate differently. SLS 
uses a laser to melt and fuse layers of thermoplastic powder, 
which supports complex shapes and eliminates the need for 
additional support structures, resulting in strong and durable 

parts. In contrast, SLA is an earlier rapid prototyping tech-
nique that employs UV light to solidify a liquid polymer layer 
by layer. Once a layer hardens, the printer proceeds to the 
next, gradually building up the model. This method offers 
extremely high detail and precision, making it ideal for intri-
cate designs. Both technologies ensure excellent dimensional 
accuracy, samples of scaffolds produced by each 3D printing 
technique are depicted in Figure 12. The principles and details 
of these techniques are well-summarized in [126, 135] which 
we recommend for further reading. Besides the three main 3D 
printing methods for creating ECM scaffolds, there are other, 
less commonly used techniques like selective laser melting, 
photolithography, soft lithography, and digital light processing 
[127, 136–138].

3.2   |   Bioprinting

Among the various 3D printing methods, bioprinting is a 
subfield that focuses on creating living biological constructs. 
Bioink printing entails layering cell-containing biomaterials, 
termed bioinks, to fabricate 3D structures resembling natural 
tissues, as shown in Figure 13. Bioprinting creates scaffolds by 
layering bioinks containing cells and materials like alginate or 
collagen [141]. Unlike the FFF 3D printing technique, which 
melts plastic with heat, bioprinting typically works at room 

FIGURE 12    |    ECM structure made from 3D printing (a) SLS technique [133], (b) SLA technique [134], and (c) FFF. Those figures are licensed un-
der the Creative Commons Attribution 4.0 International License (CC BY 4.0).

FIGURE 13    |    Schematic representation of 3D bio-printed scaffolds used in TE (a) a clavicle bone scaffold created using GelMA-based bioink [139]. 
Reproduced with permission from John Wiley and Sons. (b) a scaffold made of methacrylated hyaluronic acid. This figure is based on the work by 
Michelle T. Poldervaart et al., titled 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity and is licensed under 
the Creative Commons Attribution 4.0 International License (CC BY 4.0). The original work can be found in reference [140].
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temperature and uses chemical processes to solidify the scaf-
fold [142]. Subsequently, bioprinting creates an ideal environ-
ment for cells within ECM scaffolds, allowing precise control 
over their organization and structure.

Subsequent stabilization via crosslinking or gelation fosters 
cell survival, growth, and specialization within the printed 
constructs. Bioprinting finds wide application possibilities 
in TE, enabling the incorporation of ECM components into 
printed tissues for various purposes [143]. Various advances 
and developments in bioprinting for emulating ECM struc-
tures include bio-ink [144], multi-material printing [145], 
cell-laden constructs [146], vascularization [147], and biofab-
rication techniques [148]. Their main application possibilities 
are shown in Table 4.

The bioinks often combine synthetic and natural materials, such 
as hydrogels, fibrin, collagen, and hyaluronic acid, to replicate 
the ECM's mechanical and biochemical properties  [156]. Shin 
and Kang [157] created gelatin bioinks for 3D printing, find-
ing them suitable for precise cell placement in 3D structures. 
Furthermore, their research demonstrated the bioink's ability to 
accurately position different cell types within 3D arrangements. 
The principles and details of the techniques are summarized in 
reference [158].

Even though bioprinting can create structures with various 
shapes and use different materials, it is still difficult to pre-
cisely reproduce the detailed nanoscale features and com-
plex makeup of bone ECM scaffolds. The layered structure 
of bone ECM includes nanoscale mineralized collagen fibers, 
which makes it challenging for current bioprinting methods 
to achieve the same precision and complexity as natural ECM 
scaffolds.

4   |   Synergistic Approaches Between 3D Printing 
and ES Techniques

Recent advances in TE have improved electrospun materials, 
leading to the creation of complex ECM with multiscale hierar-
chical scaffolds by combining ES with 3D printing techniques. 
This chapter explores the latest methods for making these 
hybrid ECM scaffolds and how their micro- and nano-scale 
features affect cell behavior like attachment, migration, and 
differentiation.

4.1   |   Challenges in Replicating Natural ECM 
Structure in 3D-Printed Scaffolds

Typically, 3D-printed ECM scaffolds by FFF techniques do not 
offer a satisfactory cell adhesion environment because of the 
formation of too large pores [159]. These characteristics deviate 
from the natural ECM structure and fail to provide suitable sur-
faces for effective cell adhesion. Moreover, collagen and elastin 
within the ECM are characterized by their fibrous nature, with 
diameters typically falling in the range of about 50–500 nm. 
These dimensions are significantly smaller than what can be 
achieved in 3D-printed scaffolds, making it challenging for 
them to establish attachment [160–163]. Murphy and O'Brien 
[164] showed that the size of pores in random ECM scaffolds 
varies from around 100–500 μm. However, cell clusters were 
observed at the edges of the scaffolds with reduced pore sizes 
ranging from 85 to 120 μm, which restricted the penetration of 
cells into the scaffold.

Therefore, enhancing the effectiveness of 3D-printed ECM scaf-
folds is essential to create a microenvironment that closely sim-
ulates natural conditions.

4.2   |   Enhancing 3D-Printed Scaffolds With ES

The combination of both ES and 3D printing techniques ampli-
fies their advances in constructing complex structures like ECM 
scaffolds, as shown in Figure  14. They enhance each other's 
capabilities and address their limitations. As previously noted, 
designing a 3D-printed ECM scaffold involves a detailed process 
considering tissue type, mechanical properties, porosity, and 
biodegradability [166, 167]. Specific porosity and pore size are 
crucial for bone scaffolds to support cell infiltration and nutrient 
distribution. Therefore, this integration of ES and 3D printing 
thus forms a potent combination for creating advanced biomi-
metic scaffolds.

In essence, integrating ES and 3D printing techniques im-
proves the precision in creating intricate structures that closely 
resemble natural ECM tissues, offering better support for cell 
organization and adhesion [168]. Combining both methods 
must create a suitable microenvironment, provide mechanical 
support, and control cell activities [169–172]. Nanofibrous net-
works provide a substantially larger surface area than dense 
materials, allowing cells to encounter additional adhesion 

TABLE 4    |    The application of bioprinting for constructing ECM structures.

Categories Function Reference

Tissue engineering Offer a framework for cells to adhere to and arrange themselves within. [149]

Cell encapsulation Enables accurate positioning of cells within a 3D framework, facilitating the 
setup of cells within an environment that closely mimics the natural ECM.

[150]

Bioactive components Permits tailoring the ECM structure to align with the tissue being addressed. [151]

Customized ECM Enables the adaptation of the ECM structure to correspond 
with the specific tissue being focused on.

[152, 153]

Regenerative medicine It can produce tissue grafts or implants that include ECM 
components, promoting tissue repair, and regeneration.

[154, 155]
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sites and promoting their spreading and directed movement 
[173]. Consequently, electrospun nanofibers can improve the 
3D-printed ECM scaffolds and render them more biomimetic. 
Electrospun layers may also enhance the scaffold's structural 
reliability. The nanofibrous structure promotes cell adhesion 
and proliferation, helping cells to grow and differentiate into 
the desired tissue type [174, 175].

4.3   |   Hybrid Fabrication Methods 
and Combination Approaches

There are several approaches to combining ES and 3D print-
ing techniques to make a scaffold-like ECM. Each of these 
approaches can be tailored depending on the specific require-
ments of the TE application, such as the type of tissue being 
mimicked, desired mechanical properties, and biological 
functionality. We outlined several combination methods in 
Table 5, focusing on their approaches, benefits, and potential 
applications.

One effective way to combine these two techniques is using 
multilayered designs, where electrospun mats are placed over 
3D-printed substrates to create composite scaffolds with mul-
tiple scales [181]. Making a scaffold using a sequential fabri-
cation approach involves either layer-by-layer or post-printing 
ES methods. In the first method, layers of electrospun fibers 
are deposited alternately with 3D-printed structures. This can 
be done by using two separate setups: one for ES and one for 
3D printing, where the substrate is moved between the two 
during the fabrication process, as illustrated in Figure  15. 
On the other hand, in post-printing ES, the 3D-printed scaf-
fold is first created, and then electrospun fibers are deposited 
onto or around the scaffold. While this approach combines 
the mechanical support of 3D-printed structures with the 
fibrillary mimicry of ECM provided by ES, it faces several 
challenges. Misalignment between the printed scaffold and 
the electrospun fiber mats often occurs, especially in manual 
layer-by-layer assembly, leading to inconsistencies in scaf-
fold architecture. Additionally, weak interfacial bonding be-
tween the electrospun layers and the 3D-printed scaffold can 

compromise mechanical integrity. The need for separate set-
ups and transitions between processes further increases pro-
duction time and complexity.

Recently, Cao et  al. [183] developed a dual-scale PCL/nHA/
MWCNTs scaffold for bone regeneration by combining ES with 
layer-by-layer 3D printing as shown in Figure 16. They dissolved 
PCL, nano-hydroxyapatite (nHA), and multi-walled carbon 
nanotubes (MWCNTs) to create composite scaffolds through 3D 
printing, which were then reinforced with an electrospun layer 
of the same material. This approach resulted in a dense, disor-
dered layer of nanofibers tightly bonded to a porous 3D-printed 
scaffold, enhancing cell seeding, adhesion, and proliferation.

Another method to combine these two techniques is to print 
3D grids and then apply electrospun nanofiber mats, securing 
the mats with adhesive. Recently, Belgheisi et al. [184] created 
hybrid scaffolds by sticking a PCL or layered double hydroxides 
(LDH) and PCL nanofiber mats between two 3D-printed two-
layer grids. These mats were attached to 3D-printed circular 
PCL grids with 400 μm strands using a PCL-based glue made 
from a 15% PCL solution in a DCM/DMF mixture (2:1 v/v), ap-
plied at 20 spots/cm2. Adding LDH reduced the fiber diameter 
and increased the surface roughness of the mats. Structural 
analysis showed that the nanofiber mats adhered well to the 
grids without affecting their shape. The resulting LDH/PCL 
scaffolds had a higher Young's modulus and exhibited faster 
degradation. In  vitro tests indicated better cell adhesion, in-
creased alkaline phosphatase activity, and more calcium depo-
sition, suggesting that these scaffolds are promising for bone 
TE because of their enhanced mechanical strength, bioactivity, 
and support for cell growth and mineralization.

Gonzalez-Pujana et al. [176] investigated hybrid scaffolds using 
3D printing and ES to create semicrystalline PCL scaffolds. 
They produced these hybrid scaffolds by layering 10 layers of 
3D-printed PCL filament with electrospun PCL solution, re-
sulting in structures that were 21 mm in diameter and 1 mm in 
height. The 3D printer employed had a 0.4 mm nozzle, operated 
at 110°C, and used a printing speed of 30 mm/s with a 75% infill 
density and 100% flow rate.

FIGURE 14    |    (a) Schematic diagram illustrating the combination of ES and 3D printing techniques for creating ECM scaffold, (b) SEM images of 
hierarchical PCL scaffolds produced by integrating ES with 3D printing. (c) SEM images of PCL scaffolds were produced exclusively by the 3D print-
ing technique [165]. Reproduced with permission from John Wiley and Sons.
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The scaffolds exhibited shape memory, had good mechanical 
properties, and featured a porous network with both micro- and 
macro-pores. SEM and Fourier transform infrared spectroscopy 
showed that the scaffold materials were well-integrated and free 
of residual solvents. The scaffolds demonstrated good flexibility 
and shape recovery and were hydrophobic enough to support cell 
culture. When MC3T3-E1 preosteoblasts were cultured on these 
scaffolds for 21 days, they showed increased growth, spreading, 
and osteogenic differentiation. These results suggest that the 
hybrid PCL scaffolds effectively support bone cell growth and 
differentiation for bone regeneration applications. Although 
this approach reduces time and enhances interfacial bonding, 
coordinating the two processes is technically challenging. Each 
method has specific requirements, such as certain voltage and 
flow rates, that must be balanced to achieve consistent results. 
The process is further constrained by equipment limitations 
and the need for specialized systems to integrate the methods. 
Additionally, material choices are restricted to those compatible 
with both processes.

In the context of bone regeneration, in vivo studies have shown 
that hybrid scaffolds effectively support the osteogenic differen-
tiation of stem cells and promote vascularization for successful 
bone healing. For instance, research involving these scaffolds 
in animal models has reported enhanced bone formation rates 
compared with traditional scaffolds, with noticeable improve-
ments in both the quality and quantity of bone growth [178, 185]. 
Recent research has also highlighted “osteoinductive or smart 
biomaterials,” which show great potential for helping with bone 
healing. These materials can interact with their environment 
and encourage new bone growth. However, the exact biologi-
cal processes involved are still not fully understood, and more 
research is needed [186]. For instance, functionalization by 
post-processing enhances 3D-printed scaffolds with electrospun 
bioactive layers, improving cell attachment but often causing 
uneven fiber deposition or scaffold weakening. Similarly, coax-
ial printing combines 3D printing and ES for precise material 
placement, faces issues like clogging, and relies on costly, high-
precision, specialized equipment.

4.4   |   Advanced Methods and Functionalization 
Techniques for ECM Scaffolds

Numerical studies highlighted the results and advantages of 
integrating those techniques to mimic ECM-like scaffolds, 
particularly focusing on promoting cell growth. After scaffold 
fabrication, the surfaces can be modified through ES bioactive 
substances or ECM components onto the 3D printed structure to 
enhance cell attachment and growth [187]. Cells, such as stem 
or tissue-specific cells, can be seeded onto electrospun scaffolds 
[188]. In addition, biomimetic factors such as hydroxyapatite or 
growth factors can be added through the electrospun fibers to 
enhance bone-like properties  [189]. Growth factors like bone 
morphogenetic proteins (BMPs), vascular endothelial growth 
factor, and fibroblast growth factor are often used in hybrid ECM 
scaffolds [190]. For instance, BMPs trigger the proliferation and 
differentiation of osteoprogenitor cells and are commonly incor-
porated into bone scaffolds to enhance osteogenesis and stimu-
late bone formation and regeneration [191]. Bioactive peptides, 
such as the RGD (Arg-Gly-Asp) peptides, are commonly used T
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to functionalize electrospun fibers [192]. These peptides mimic 
the cell-binding patterns found in natural ECM proteins. The in-
clusion of RGD peptides can improve osteogenic differentiation 
when used in bone scaffolds. However, adding bioactive mole-
cules during fabrication must align with both processes. Rajzer 
et al. [193] electrospun gelatin and osteogenon nanofibers onto 
a PLLA scaffold. To improve the stability of the gelatin fibers in 
aqueous solutions, they were crosslinked using glutaraldehyde 
vapors. After 1 week in simulated body fluid, apatite crystals 
formed on the gelatin surface because of osteogenon mineraliza-
tion. In addition, cells successfully adhered to and proliferated 
on the gelatin layer, demonstrating the biocompatibility of the 
composite scaffolds.

Rosales-Ibáñez et  al. [194] designed a bioactive bilayer scaf-
fold for ECM bone by modifying the surface of the scaffolds. 
They enhanced the scaffold with aminolysis and gelatin graft-
ing. The scaffold was cleaned, treated with various solutions, 
and modified to improve cell adhesion. Additionally, the inner 
layer of the ECM scaffolds intended for slow degradation repli-
cates the shape and structure needed for new tissue formation. 
Meanwhile, the outer layer degrades more quickly and promotes 
cell proliferation because of its porous nature and composition. 
The scaffold surface was improved through aminolysis and gela-
tin grafting, which led to better cell adhesion. Cytocompatibility 
tests revealed that electrospun/3D-printed scaffolds with gela-
tin significantly boosted cell proliferation compared with those 
without, facilitating the differentiation of human adipose stem 
cells (hASCs) into the osteogenic lineage, thus making these 
scaffolds suitable for mimicking ECM scaffold of bone.

Pore size and distribution are critical in hybrid scaffolds as they 
directly influence nutrient transport, cell adhesion, and tissue 
regeneration. Interconnected pores are particularly important, 
as they ensure efficient pathways for oxygen, nutrients, and 
cell migration [195]. Huang et al. [196] introduced a new hybrid 
printing method that combines screw-assisted additive manu-
facturing with rotational ES to create dual-scale scaffolds with 
aligned nanoscale fibers, as shown in Figure  17. The rotating 
drum was designed to manage the density and alignment of 
electrospun fibers. The process started with printing PCL using 
a 0°/90° orientation pattern and 350 μm square pores. This 

scaffold was then positioned on a rotating ES collector, where 
varying the rotation speed helped to achieve better fiber align-
ment. As a result, the team successfully produced 3D-printed 
PCL structures with uniform microscale features and improved 
fiber alignment. Cells grown on these aligned nanofiber scaf-
folds displayed more elongated shapes and enhanced anisotro-
pic organization.

Vyas et al. [197] created a dual-scale scaffold consisting of 3D-
printed and electrospun PCL fibers using a screw-assisted ex-
trusion 3D printer, as shown in Figure 18a. The parameters for 
this process included a deposition speed of 12 mm/s and a screw 
rate of 7.5 rpm. The 3D-printed fibers had a circular geometry 
with a diameter ranging from 287.2 to 27.5 μm and a pore size of 
299.2–18.3 μm. Subsequently, electrospun fibers were deposited 
onto the scaffolds at specific layers, with a fiber diameter rang-
ing from 820 to 56 nm, as shown in Figure 18b. Biological tests 
revealed that cells migrated and aligned with an elongated mor-
phology within the pores of the printed microfibers, as shown 
in Figure 18c.

Gill et al. [198] developed a new approach to create a hybrid scaf-
fold of ES and 3DP with varying laydown angles (0°, 30°, 45°, 
and 90°), which represent the angle between fibers in successive 
printed layers. After printing, human glioblastoma cells were 
seeded as aggregates on the scaffolds. The study found that all 
designs, except the 0° laydown angle, showed higher initial cell 
attachment, likely because the stacked fibers created more sur-
face area. Additionally, the cells migrated outward from the ag-
gregates, with their movement directed by the fiber alignment, 
following the path of the fibers. Paxton et al. [199] fabricated PCL 
scaffolds with aligned and non-aligned fibers at laydown angles 
of 20°, 50°, and 90°. The aligned scaffolds had fibers stacked pre-
cisely on top of each other with uniform pores (0.5 mm2), while 
the non-aligned scaffolds featured inconsistent fiber placement 
and varied pore sizes (0.02 mm2–0.33 mm2). MC3T3-E1 cells 
were seeded onto the scaffolds. Lower laydown angles (20° and 
50°) led to uncontrolled cell bridging, whereas the 90° scaffolds 
showed cells growing along the fibers before closing the pores. 
In non-aligned scaffolds, cells initially filled smaller pores, 
but after 3 weeks, aligned scaffolds displayed more consistent 
growth and pore bridging as shown in Figure 19.

FIGURE 15    |    The preparation process of the 3D printed structure including the ES technique. This figure is based on the work by H. He, and 
K. Molnár, titled Fabrication of 3D printed nanocomposites with electrospun nanofiber interleaves, and is licensed under the Creative Commons 
Attribution 4.0 International License (CC BY-NC-ND 4.0). The original work can be found in reference [182].
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4.5   |   Electrospun Fiber Sponges in 3D Printing 
Technique

Electrospun nanofiber sponges are porous structures that en-
hance cell attachment, proliferation, and nutrient exchange. 
Various fibrous sponges have recently been developed by 
combining electrospun nanofibers with conventional hy-
drogels. This simple method combines electrospun fiber 
membranes into hydrogels to create composite fiber sponges 

[200]. Integrating these sponges into 3D-printed structures 
combines the benefits of both techniques, resulting in im-
proved mechanical properties and better control over scaffold 
architecture.

Yu et al. [201] demonstrated a solid 3D composite scaffold from 
PCL and gelatin by combining ES with 3D printing techniques. 
The process begins by cutting the electrospun PCL/gelatin 
nanofibers into small pieces (2 × 2 mm) using a high-speed dis-
persion homogenizer in a tert-butanol solution. Then, a PCL 
mesh scaffold is formed using 3D printing. In the third step, 
the dispersed PCL/gelatin nanofibers are inserted into the 
mesh of the PCL scaffold. After freezing for 24 h, the 3D com-
posite scaffolds are placed in a 2.5% glutaraldehyde solution for 
20 min, washed three times with deionized water, and freeze-
dried again for 24 h. The microporous structure provided by 
electrospun fibers greatly enhanced cell proliferation and 
supported bone tissue repair applications. Moreover, electro-
spun nanofiber sponges can be integrated into the 3D-printed 
structure either during printing or through post-processing 
methods such as adhesive bonding. PGA-based electrospun 
nanofiber sponges have been applied in 3D-printed ECM struc-
tures. Kobayashi et al. [202] developed a unique PGA–collagen 
nanofiber sponge, achieving fast cellularization and neovascu-
larization in a week, hinting at the possibility of bio-derived 
matter-free scaffold designs for complete cell population and 
vascularization.

Electrospun layers can serve as biomimetic interfaces, guid-
ing cellular attachment and migration, while improving me-
chanical strength, especially when combined with 3D-printed 
hydrogels instead of thermoplastic polymers. For instance, 
Yoon et  al. [203] used 3D bioprinting to create multilayered 
hybrid constructs by integrating PCL electrospun mats with 

FIGURE 16    |    The integration of ES with layer-by-layer 3D printing to construct a 3D-printed PCL/nHA/MWCNTs scaffold for bone regeneration. 
This figure is based on the work by Cao et al., titled 3D printed-electrospun PCL/hydroxyapatite/MWCNTs scaffolds for the repair of subchondral bone 
and is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). The original work can be found in reference [183].

FIGURE 17    |    Hybrid printing technique that integrates screw-
assisted 3D printing with rotational ES. This figure is based on the work 
by Huang et al., titled Engineered dual-scale poly (ε-caprolactone) scaf-
folds using 3D printing and rotational electrospinning for bone tissue re-
generation and is licensed under the Creative Commons Attribution 4.0 
International License (CC BY 4.0). The original work can be found in 
reference [196].
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alginate hydrogel. These alginate-PCL scaffolds demonstrated 
a fourfold increase in compressive modulus and better elas-
tic recovery, attributed to PCL's elasticity. Additionally, the 
nanofibers enhanced fibroblast proliferation by 1.8 times by 
increasing scaffold porosity.

John et  al. [204] developed a technique to make 3D scaffolds 
with patterned macrochannels. They used 3D printed scaffolds 
along with poly(ε-caprolactone) (PCL)/gelatin short electrospun 
nanofibers. The resulting nanofiber aerogels had patterned mac-
rochannels and anisotropic microchannels formed by freeze-
casting with 3D-printed sacrificial templates. These scaffolds 
had single or multiple layers of macrochannels resembling the 
3D-printed templates. Aligned microchannels, created through 
partially anisotropic freezing, acted as interconnected pores 
between the templated macrochannels. The scaffold's effective-
ness was assessed using an osteoblastic cell line (MC3T3-E1). 
The cells successfully migrated into the templated aerogel scaf-
fold, as shown in Figure 20.

4.6   |   Remaining Challenges and Future Directions 
in the Combination

While merging ES and 3D printing techniques brings inno-
vative capability to ECM scaffold design, it introduces sev-
eral challenges. The complexity of fusing these two advanced 
technologies complicates the production process and raises 
costs. Additionally, poor adhesion between layers may cause 
delamination, impacting the scaffold's structural integrity. 
Achieving consistent quality and precise fiber placement 
during manufacturing demands accurate equipment cali-
bration. Scaling up the production of ECM-mimicking scaf-
folds for commercial and medical applications poses several 
challenges because of its detailed, labor-intensive, and time-
consuming nature. The ES process, while being effective at 
creating nanoscale fibers, is inherently slow, and limits its 
scalability for large-scale production. Integrating ES with 3D 
printing adds complexity, as it requires precise alignment of 
nanoscale fibers with macroscale printed structures. Material 

FIGURE 18    |    (a) Diagram illustrating the fabrication process of a dual-scale scaffold using both 3D printing and ES. (b) Pictures showing cells 
seeded onto the 3D-printed scaffold, (c) SEM image depicting cell alignment and bridging within the dual-scale scaffold. This figure is based on the 
work by C. Vyas et al., titled Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented 
Fibers to Promote Cell Alignment and is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). The original work 
can be found in reference [197].
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compatibility further complicates the process, as each tech-
nique often relies on different polymers or solvents. Ensuring 
the production of consistent, high-quality scaffolds at scale 
while meeting strict medical standards adds another layer of 
difficulty. For instance, incorporating electrospun nanofibers 
into bio-inks for 3D printing introduces additional steps like 
dehydration, freeze-drying, and cross-linking making the 
process even more time-intensive [205].

To overcome these obstacles and fully exploit the capabilities 
of these combined technologies for TE, future strategies could 
focus on developing new materials that enhance layer adhesion 
to reduce delamination. Future solutions could involve the use of 
smart materials that are designed to enhance adhesion between 
electrospun fibers and printed layers. Moreover, specific innova-
tions, such as developing bioinks that support cell viability and 
promote tissue integration, will be instrumental in enhancing 

FIGURE 19    |    Fluorescence microscopy images of MC3T3-E1 cells cultured for 3 weeks on PCL scaffolds with fibers in consecutive layers not 
precisely stacked. The scaffolds were fabricated at laydown angles of 20°, 50°, and 90°, featuring (a–c) aligned pores (0.5 mm2) and (d–f) non-aligned 
pores [199]. Reproduced with permission from Elsevier.

FIGURE 20    |    The MC3T3-E1 cell migration on PCL/gelatin short nanofiber-composed 3D aerogels without and with patterned macrochannels 
by measuring the depth of the cells on the aerogels in micrometers from the 3D confocal images [204]. Reproduced with permission from John Wiley 
and Sons.
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the functionality of 3D-printed scaffolds. For post-processing, 
better control of fiber deposition and using solvent-free or bio-
active coatings during printing can save time and prevent dam-
aging the structure. Combining functionalization with printing 
could simplify the process. Incorporating smart materials that 
can respond to changes in their environment, such as pH, tem-
perature, or specific biochemical signals can provide dynamic 
capabilities to the scaffolds, facilitating better integration with 
host tissues. Additionally, exploring sustainable practices, such 
as using biodegradable or recycled materials in the production 
of bioinks, will not only reduce costs but also promote environ-
mental responsibility in scaffold fabrication.

Advancements in automation and refined process controls could 
simplify operations and ensure consistent quality. Automated 
systems can manage intricate, repetitive steps with high preci-
sion, reducing the variability that often occurs with manual han-
dling. Creating standardized protocols and automated systems 
for sequential fabrication can reduce human error and improve 
consistency. The advent of modular production systems capable 
of seamlessly transitioning between ES and 3D printing will 
streamline the manufacturing process, allowing for efficient 
scaling from small to large production. Combining 3D printing 
and ES into one system for hybrid fabrication can simplify the 
process and lower costs. Using materials that work with both 
techniques and optimizing the process in real-time can reduce 
defects. While advancements in artificial intelligence (AI) facil-
itate process optimization and material design, ensuring consis-
tent quality and performance in scaffold production. These tools 
can simulate production scenarios, analyze large datasets, and 
predict outcomes based on varying input conditions, thus en-
hancing overall process efficiency. Together, these materials and 
technologies promise to advance the field of TE by enabling the 
creation of more effective and functional scaffolds.

Innovative equipment designs capable of seamless mode tran-
sitions, alongside sophisticated software solutions for process 
optimization, would further streamline production. In coaxial 
printing, improving nozzle design and using advanced mate-
rials can prevent clogs and increase precision. Making coaxial 
printing systems more affordable and automated will make the 
technology more accessible. Future advancements in biofabri-
cation, including faster cross-linking methods and streamlined 
preparation steps, can help mitigate these issues. Cross-linking 
techniques enhance the mechanical stability of softer materials 
such as PEG. In addition, AI-driven systems can enable adaptive 
manufacturing processes that learn from previous production 
runs, optimizing parameters in real-time to maintain consistent 
quality. Therefore, the gap between lab and clinical scalability 
will narrow as more efficient preparation techniques emerge.

Furthermore, encouraging collaboration across fields such as 
materials science, engineering, and biotechnology could accel-
erate the development of effective solutions. Such partnerships 
allow for the exchange of specialized knowledge in areas like ad-
vanced fabrication techniques, biological insights, and precision 
engineering. This collective expertise helps overcome challenges 
like optimizing fiber biocompatibility, precisely controlling im-
mune responses, and translating small animal study findings 
to human use [206]. Clinical translation is limited by insuffi-
cient large animal studies, which are crucial for understanding 

the immune response in more complex organisms. Addressing 
these challenges can involve using organs-on-chips, innovative 
microfluidic devices that simulate human organ structure and 
function with living cells [207]. These models provide more ac-
curate and ethical disease models, enhancing our understand-
ing of human physiology beyond traditional methods.

By addressing these multifaceted challenges through targeted 
technological advancements, the combination of ES and 3D 
printing can significantly improve the design and production of 
advanced ECM scaffolds.

5   |   Conclusions

The integration of ES and 3D printing technologies represents 
a significant advancement in scaffold fabrication, particularly 
in the fields of TE and regenerative medicine. Each method has 
its own set of strengths and challenges, but their combination 
is particularly powerful, producing scaffolds that closely rep-
licate the ECM scaffold to enhance tissue regeneration. There 
are several approaches to combine those two techniques. The 
hybrid approach, combining ES and 3D printing, emerges as the 
best method for scaffold fabrication for several reasons. First, 
3D printing allows for precise control over the scaffold's mac-
rostructure, creating complex geometries with pre-determined 
pore sizes essential for cell migration and nutrient diffusion. On 
the other hand, ES can deposit nanofibrous layers that mimic 
the natural fibrous structure of the ECM, providing a high sur-
face area for cell adhesion and proliferation. This dual-scale 
approach addresses the limitations of each technique alone and 
ensures a more biomimetic scaffold.

Key variables in this dual process include several parameters to 
affect electrospun fiber morphology. In 3D printing, layer thick-
ness, orientation, and temperature are critical for attaining the 
scaffold's macrostructural traits. In addition, effective scaffold 
creation involves optimizing material selection to ensure both 
biocompatibility and biodegradability, controlling porosity and 
pore size to aid tissue integration and vascularization, and en-
hancing surface features to foster better cellular interactions.

Nevertheless, blending these technologies brings new challenges, 
including greater complexity, higher costs, and probable issues 
like delamination, which can affect the structural integrity of the 
scaffolds. The exact placement of fibers and the labor-intensive 
manufacturing process make it difficult to scale up production. 
Looking ahead, the future of using ES and 3D printing for scaf-
fold fabrication is very favorable, with countless improvements 
on the way. Innovations in bioinks and polymers are expected to 
boost the functionality and biological effectiveness of the scaf-
folds. Moreover, Future developments could involve adding mul-
tiple ES heads to 3D printers, allowing for the precise placement 
of different nanofibers in scaffolds. This could enhance scaffold 
design and support specific cell functions or differentiation, 
advancing TE and regenerative medicine. Furthermore, better 
printer designs and software improvements will likely allow for 
more precise fiber placement and improved scaffold architecture. 
The growing applications in regenerative medicine, such as cre-
ating complex tissue structures and even whole organs, could re-
form transplant medicine and other medical fields.
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